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We calculate the sixth frequency moment (w8)x of the frequency-wave-vector-dependent spectral function
for the isotropic Heisenberg paramagnet at elevated temperatures with arbitrary spin and arbitrary range
of exchange interaction. These exact results are compared with the approximate sixth moment predicted
by the two-parameter Gaussian representation used in the preceding paper for the generalized diffusivity.
The general agreement of the approximate and the exact results for (w$)g is satisfactory. For the exactly
soluble spin-} nearest-neighbor one-dimensional X ¥ model, we compare the predictions of the two-param-
eter Gaussian approximation for {(w)g** and (w8)x** against the exact results for these moments (which
are derived by using the corresponding exact spectral function given by Katsura et al. The agreement
is again found to be satisfactory. This reinforces our confidence in the qualitative validity of the simple
Gaussian approximation for the generalized diffusivity.

I. INTRODUCTION

S noted in the preceding paper,! the time depen-
dence of the spin correlations is seemingly well
described by a simple two-parameter Gaussian approxi-
mation? for the generalized diffusivity. An important
check of the adequacy of any approximate frequency—
wave-vector-dependent spectral function is a com-
parison of its frequency moments against the exact ones.
The use of the appropriate two-parameter Gaussian
approximation for the diffusivity automatically insures
the exact preservation of the lowest three nontrivial
frequency moments of the spectral function Fo*(K,w),
* le, (0™)x** n=0,1,2. Therefore, one might ask how
well such an approximate spectral function, constructed
in the fashion described in Refs. 1 and 2, preserves
the next most important® frequency moment, i.e.,
(@) e
For the model system with only nearest-neighbor XV’
exchange and with S=1% spins distributed along a linear
chain (i.e., the restricted XV model), the spectral func-
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3 The reason the low-order frequency moments are relatively
more important than the higher-order moments is that they are,
in general, more sensitive to the detailed shape of the frequency—
wave-vector-dependent spectral function in the region of small
and intermediate frequencies. The dependence of the frequency
moments upon the spectral function for large frequencies becomes
rapidly more important as the order of the moment increases.
Because the experimental measurements of the frequency spec-
trum are usually most reliable for low and intermediate frequencies
[see W. Marshall and R. D. Lowde, in Reporis on Progress in
Physics (British Institute of Physics and the Physical Society,
London, 1968), Vol. XXXT, Part IT], therefore, it is reasonable to
compare the exact result for the next-higher-order frequency
moment to the approximate results.

tion F=(K,w) is exactly known.*® From this, it is a
simple matter to calculate the moments (w?*)x** for
all #. In Sec. II, we describe a comparison of the results
for these moments for =23 and 4, as obtained by using
our approximate phenomenological theory (which uses
only the knowledge of the moments with »=0, 1, and 2)
and as computed from the exact results given in Ref. 4.

For the case of the isotropic Heisenberg paramagnet,
only the zeroth, second, and fourth moments have been
known until now (see the work of Marshall and co-
workers in Ref. 3 and in the various works cited therein).
Therefore, we have painstakingly carried out the com-
putation of the sixth moment for this system. The labor
involved in this effort is well over an order of magnitude
more than that needed for computing all the three
lower-order moments combined. The relevant algebra
is inordinately long and tedious, and is in essence quite
straightforward. We record the final results in Sec. III
while some of the salient features of the calculation are
relegated to an appendix. This result (for the sixth
moment) is valid at elevated temperatures for general
spin, arbitrary dimensionality, and for arbitrary range
of the isotropic exchange interaction. We specialize it
to a one-dimensional system with only nearest- and
next-nearest-neighbor exchange, and record the com-
parison of the relevant approximate and exact sixth
moments in Sec. IV.

Sections V and VI deal with two-dimensional (square
net) and three-dimensional (simple cubic) lattices with
nearest-neighbor exchange only.

The over-all agreement between the approximate and
the exact sixth moments further reinforces our faith in
the use of the phenomenological Gaussian representa-
tion for the diffusivity as a simple first approximation
for studying the dynamical behavior of paramagnetic
spin systems.

4 We have computed these moments for # =3 and 4 by using the
appropriate exact result for the spectral function F#*(Kw), i.e.,
Eq. (55) in S. Katsura, T. Horiguchi, and M. Suzuki, Physica
(to be published).

5 T. Niemeijer, Physica 36, 377 (1967).
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XY model

3%|0% -

F1e. 1. Comparison of the
approximate (A) and the exact
(E) results for the sixth mo-
ment (w®)k* as a function of
the wave vector K. The results
refer to the restricted XV
model, i.e., to a system of one-
dimensional S=35 spins with
only nearest-neighbor x-x and
y-y exchange.

II. RESTRICTED XY MODEL

The exact solution for the longitudinal spectral func-
tion of the one-dimensional spin-3 XV model with only
nearest-neighbor exchange, i.e.,

I(R)=0 forallR,
I,(R)=I, when R is equal to the nearest
neighbor separation,
=0 otherwise, (2.1)

has been obtained by Katsura et al.4® (The notation in
the present paper is the same as that in the preceding
one.) For our purposes, i.e., when 81,1, this may be

written as follows:

[F=(K ) Jxy= () X[(4] sin3K)*—w? ]/
for w<4I, sin}K,
otherwise.

=0 (2.2)

This spectral function can readily be integrated to
give the moments (w?")x*?. For =0, 1, and 2, these
moments are a special case of Egs. (4.1a)-(4.1b) in the
preceding paper. The appropriate sixth and eighth
moments are as follows:

{wyg##=640(I; siniK)$,
{®) g =8960(, sinzK)?.

(2.3)
(2.4)
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F1c. 2. Comparison of the exact
(E) eighth moment (w?)x??, with the
corresponding approximate moment
(A) obtained by wusing the two-
parameter Gaussian representation
for the diffusivity. These results refer
to the restricted X¥ model.
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4x10°

Ix10°
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On the basis of our approximate spectral function,
we have computed approximate values of the sixth and
eighth moments and compared them with the exact

results (see Figs. 1 and 2).

The qualitative features of the two sets of results are
strikingly similar. Even the quantitative agreement

is fair.

III. SIXTH FREQUENCY MOMENT

The tedious calculation of the sixth frequency
moment of the frequency—-wave-vector-dependent spec-
tral function for a Heisenberg paramagnet with
isotropic exchange interactions of arbitrary range
leads to the following result (see the discussion of the
various salient features of this calculation in the
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T16. 3. Comparison of the exact (solid curves) and the approximate (dashed curves) sixth moment {(w®)x = {w®)x**, a=2x, ¥, 3, for a
one-dimensional system of isotropically coupled Heisenberg spins (with only nearest-neighbor exchange) at elevated temperatures.
The lower set of two curves refers to spin 3, and the upper to spin «. Exact validity of the previously enunciated (see Refs. 1 and 2)
empirical law of corresponding states would require the upper and lower set of curves to be identical. Similarly, a reasonable measure of
the adequacy of our phenomenological two parameter theory is the size of the spread between the full and the dashed curves.

Appendix):
<(.06> Kzz=<w6>K

128

= —S—X 23" IS(R)(1—e'%-R)[342X2— 72X +31]
R
+128X2 3 3 {[I(R)I(A) PL4X2(27 — 466" R 19¢7K- (R-A))
R A
+(8/5) X (4—Te K R4 307K (R-A)) | 2(— 34 4¢iK-R__ ik (R-A))]
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F1c. 4. Plot of the exact
(solid) and the approximate
(dashed) infinite-temperature
sixth moment for a one-
dimensional isotropic Heisen-
berg spin system. This plot
corresponds to the case for
which the ratio of the second-
nearest to the nearest-neighbor
exchange is equal to % The
lower set of curves correspond
to spin %, and the upper to spin
. This plot should be com-
pared to Fig. 3, which corre-
sponds to 7" =0.

8xI10° -

2%10°

+I4R)I*(A)[(16/5)X2(— 68+ 55¢7K R4 32¢1K-A—19¢iK- (R-4))
+X(—174(93/5)e K R —giK-A 34K (R-A)) {4 (34 2K -R| piK-A_ K- (R-A))]
+I{R)I(A)I(R—A)[8X2(—1+(31/5)e® R—(26/5)eiK 4)
+3X (79876 R4-8¢ K -A)+2(—3+5¢ X R —2¢iK4) ]
+I3(R)I2(A)I(R—A)[8X2(3—(71/5)e’® R4-TeiE A4 (21/5)¢iK- (R-A))
+2X(—(16/5)+(8/5)e’® R4-15¢K-A— (67 /5) K R-A)) | 2(6 —3¢iK R _ 5¢iK-AL )(iK-(R-4))]

+LIR)I(A)I(R—A)P(e%-R—1)(2X —12X?)}
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Fic. 5. Comparison of the
exact (solid curves) and the
approximate (dashed curves)
sixth frequency moments with
T =1. The lower set of curves
correspond to spin %, and the
upper to spin .

+256X4 Y T 3 {[I(R)I(A)I(B)]2(97 —152¢7K - R4-65¢7K- (R+A) 10K - (R+A+B))
A B R

+[I(R)I(A) PI(B)I(R+A+B)(—7—306K: (R+B) 156K (R+A) _ 6¢iK B )ik -A)
+I(R)I(A)I(B)I(R—A)I(R—B)I(A—B)(2¢'%-R—2)
F[IR)I(A)I(B)I(R+B)(—74+10gK- R+A) — 307K (A+B)

4-1467K - (RHB) | 2iK- (RAFB) | )8piK-A| 1()4¢iK -B— 50¢iK R)

+I2(R)I(A)I(B)I(R— A)T(A—B) (261267 R-A) _{8¢iK- (R-B) _ ¢iK B | 8¢iK A 4¢iK R)
+I3(R)I(A)I(B)I(R—A)I(R—B)(—10—26K- A—B) 4 18¢iK A —GgiK-R)} | (3.1)
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F16. 6. The exact (solid curves) and the approximate (dashed curves) for the sixth frequency moment of the spectral function for a

two-dimensional (square net) lattice of isotropic Heisenberg spins with only nearest-neighbor exchange equal to 7. The K vector is
taken to be along the x direction. The lower set of curves refers to spin %, and the upper to spin .

where result holds only in the limit of elevated temperatures.
X=35(S+1). (3.2) In the relevant Hamiltonian, i.e.,

The superscripts are dispensed with at this point, se=—Y I(g,/)S;-S (3.3)
since we are treating an isotropic system. The above o ”’
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Fic. 7. The legend is the same as in Fig. 6 except for the fact that the K vector, i.e., K=4K,4jK,, is now taken to be along the
diagonal K,=K,. Note that there is somewhat better agreement between the approximate and exact results in two dimensions than in

one dimension.
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0 l ' :

Kx
Fi6. 8. Plot of the exact (solid curves) and the approximate (dashed curves) for the sixth frequency moment of the frequency-wave-

vector-dependent spectral function of a three-dimensional (simple cubic) lattice of isotropic Heisenberg spins with only nearest-neighbor
exchange. The lower curves correspond to the case of spin %, and the upper to spin «. The K vector is taken to be along the [100]
direction.
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F1c. 9. The legend is the same as in Fig. 8, the only difference being that now the K vector is along the [110] direction.
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F1c. 10. The legend is the same as in Figs. 8 and 9, the only difference being that now the K vector is along the [1117] direction,

the range of the exchange interaction is taken to be arbitrary. Note that the magnitude of the spin S and the
dimensionality of the lattice are arbitrary.

IV. RESULTS IN ONE DIMENSION

To do calculations with the sixth moment as given in Eq. (3.1), it is necessary to specialize it to the lattice
structure in question and to explicitly specify the spatial structure of the exchange interaction.

For a linear chain with nearest-neighbor [Z(1)] and next-nearest-neighbor [7(2)] exchange, the result for
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(w8 x/2I(1)8= (4X)4[(1—C1)(951/5—722C;/5+40C,2)+T (1 —C1)(—498 —288C;+120C2)
+T2(1374—6286C1/5—3916C,2/54+4792C13/5—240C,4—52C3)
+T3(—3936/5-+478C1/5+4644C;2/5+104C,3/5—240C,4—18C;)
+T4(10488,/5—4258C;/5—15672C12/5+6392C,*/541120C4 —480C+* —30C;)

+7%(3821/5—8834C12/5+6688C1%4/5—320C,5—15C,)]
+(128/5)X3(1—Cy)[ —42C,— 17842521 (14C1)+T2(—382—288C,4-12C2)+19273(1 — C+2)
+T4(—190—186C1+12C2)+T5(1+C1)(—272—168C+2) ]
+(256/5)X2(1—C1)[ =3 +6C1+T*(—9+2C1+8C*)+T3(—11—2C1+-8C+?)

+T4(—28—18C148C2)+T5(—17—24C2) (14-C1) ].

In the above equation, we have used the notation

Co=cosK), T=I2)/I(1). 4.2)

The above exact result is plotted as solid curves in
Figs. 3-5 for spin 3 and spin . 7, the ratio of the
next-nearest-neighbor to nearest-neighbor exchange, is
taken to be equal to 0, 0.5, and 1.0, respectively, in
Figs. 3-5.

To compare the exact results with those given by the
approximate spectral function (constructed by using
the two-parameter Gaussian representation for the
diffusivity), we have computed the approximate sixth
moment and plotted the results as dashed curves in the

(%) x/2I(1)8=256X4(2—C)(5971/5—1972C/5-+40C?)

+512X4(—108 —15C,2—15C,2—60C.C,~+99C) 4 (128/5) X2(2—C)[ X (— 284 —42C) +12C—41].

In the above equation, we have used the notation

Cy=cosK,, Cy=cosK,, C=C,+C,. (5.2)

We have plotted the above exact, and the appropriate
approximate, results for the sixth moment in Figs. 6
and 7. The relative fit of the various results is seen to be
a strong function of the magnitude of the K vector (as
was the case in one dimension) as well as its direction.
For example, the approximate (dashed) curves cross
over the exact (solid) curves in Fig. 7, which refers to
the case for which the K vector is along the diagonal to

(%) x/21(1)5=256X*4(3—C)(14691/5—3072C/5+-40C?)

(4.1)

same figures. The discrepancy between the approximate
and the exact sixth moments gives a measure of the
adequacy of the approximate spectral function derived
in Refs. 1 and 2. Similarly, the spread between the S=1
and the S= o curves reflects upon the usefulness of the
empirical law of corresponding states enunciated in
Refs. 1 and 2.

V. RESULTS IN TWO DIMENSIONS

For brevity, we shall study only the case of nearest-
neighbor exchange for a square lattice. The appropriate
representation of the sixth moment for this system is
found to be

(5.1)

the x and the y axes. On the other hand, the same curves
do not cross over in Fig. 6, which refers to the case
where K is along the x axis. )

VI. RESULTS IN THREE DIMENSIONS

Again, for brevity and convenience, we examine only
the simplest three-dimensional lattice, the simple cubic,
and assume the range of the exchange interactions to be
limited to the nearest neighbor. The corresponding
result for the sixth moment is

+512X4[ —270—60(CCy+CoCoC,C) —15(C24C,2+C,2)+165C]

In the above equation, we have used the notation
Cy=cos(K,), Cy=cos(Ky),
C.,=cos(K;), C=C,+C,+C.. (6.2)
In Figs. 8-10, we have plotted the above exact results,
as well as the corresponding approximate results ob-

tained by using the phenomenological construct for the
spectral function.

+(128/5)(3—C) X[ — X (390+42C)—77+12C].

6.1)

The general features of the results are found to be
not unlike those obtained for one and two dimensions.
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APPENDIX d\"
. . <@-> Se(t)=p,™ (1), (A2)
In a calculation as long and as tedious as the one dt
described in this paper, it is very important to devise then P
checks that the various intermediate steps can be Y a1
subjected to. The most efficient procedure for calcula- < v dt) SO =(=1)"0, (). (A3)

ting the sixth moment (w®)x is to start with the identity

Y iR

lim () x =2
B0 (g—w)

><<(i%>3sgz(t)< —if;)sswzu’)k:”. (A1)

[Compare with Eq. (2.8b) of the preceding paper.] The
reason for this is that here we only need to calculate
(7d/d1)3S #(¢), because quite obviously if

Moreover, since the calculation of the repeated com-
mutators with the Hamiltonian, ie., (Zd/d)"S2(@),
becomes rapidly more cumbersome the as order # of
the repetition increases, therefore, the most efficient
calculation for the sixth moment is via the identity (1).

Under the Hamiltonian (3.2), we find p,®(f). Then
we recast it into the following convenient form:

—pg® () =Ay+B,+Coy+-Dy+E,4F,4+Go+H,, (Ad)

where

4,=4 fZ L1(gm)I(fm)(1—045) = I(gNI(fm)(1—bom) —I(gf)I (gm)(1—57m)]

X[I(g))SAS 7 (SitSm —SutSi) (1= 8:0)+1(im)S 2Sw? (Si+S ;7 —S,+5¢) (1—6;5)
F+I(im)S 2S#(Sg+Sm™—Snt Sy ) (1—=08i7) (1 —=06:) +1(g0)S £ S# (St S =Syt Sm ) (1 —8:7) (1 —8im) ]
+8 /Z [ (gf)—1(g0) M (gm)I (i f)S 7S (StSmm = SutSi) (1 —81) (1 —8,0) (1 —8m) ,  (ASa)

By=2 X [1emI(m)(—=be) = IGNT(m) (1= 0m)~ 1@/ (gm) (1= 1m)]
o XIS (S S =SS ) (St Su+SutS ) (1 —b10) (1= bim)

+4 > I(gN)I(gm)I(gi)(Se+Sim—StS;7)SHSm™ (1—8i) (1 —6im) (1 —7m)

fom,g

(A5b)

Co=4 f%l (em)I(gm){[41(gf) —I(fm) 1Sm*S*(Sg*S;~ =SS ) (1= 01m) +1(gf)S #Sn* (Swt S5~ —S75Sw)
HLI(fm)(1—807) —1(gf) (1= 87m) JSwS (St S g™ — S +Su™)
FHLI(fm)(1=807) —1(gf) (1 = 07m) IS S (S S~ —SwtS5™) =21 (g )Su#Sg*S 5~ (1 =8 7m)
—1(gN)S (St S +SSw) (1 —87m) +I(fm)Su(S+S~+S7S) (1 —847)
LI () —I(fm) 1S 7 (SotSw+SmtS5) (1 —8,1) (1 —b7m)}
+4 f%[] (em)I(fm)(1—3547) —1(g /)1 (fm)(1—8gm) —I(gf)1(gm)(1 —67m)]

XLI(gf)SFS#(SrtSm—SutS ) +I(fm)S 2Sm*(StS 7 —S,tS57)
+I(gm)5fzsaz(sa+sm__Sm+Sa_)+I(gm)5fzsmz(sm+sa_—'Sa+Sm—):|
—4 ,Z LZ(gm)I(fm)—I(gf)I(fm)—I(gf)I(gm)I1(gm)S (S stSm+SmtS;) (1= 847)(1—67m)

+8 ; [1(gf)—I(gm) U (g I(mf)S 2S#(SutS—S+Sm™) (1= m)
’ +8 ;: [I(gf)—I(gm) 1L (gf)I(fm)S 2Ss+Sm~(1—84m), (ASc)

Dy=23 I(gm)I(gm)[I(fm)(S*SmSs+Sm™—SmSSmtSy™)(1—04y)
f.m

+I(gf> (Sa+Sf—Sg+Sm_ =SS SutS)(1— Bfm)'i'ZI(gf) (SgtSm=SitSm™ —Sut Sy SntS)(1— Bfm)]
+2 ,Z LL(gm)I(fm)(1—25,7) —I(gf)I(fm)(1—bgm) —I(gf)I (gm)(1—b7m)]

XU(N(SHSSntSq =St S St Sw ) +I(fm) (St Sm=SetSw™—Su*SSu*S)],

(A5d)
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E,=23 I(gm)I(gm)[ 2I(fm)(Ss+Sm~—Sm™S;)SHS5(1—8,s)
fom

F2I(fm)SuzSu(SgtS =SS ) FI(fm) (St Sum=Sut Sy —SutS Sy HSm) (1 —8,7r)
F61(g/)Ss Sy (SstSm—Smt S ) FIQS) (St Smt Sy~ =SS S+ Sm™) (1 —5sm)

+2I(gf) (St SwSmt S5 —SwtS St Sm ™) (1= 87m) +21(8 /) (Se*Ss—SstS57)Smt S~ (1—587m) ]
+2 fi}" LI (gm)I(fm)(1—847) —I( N)I(fm)(1—8om) —I(gf)1(gm)(1—0sm) ]

X (gH(SHSSetSm —S+SSutSy) FI(mf)(SHSw=SutSe—SutSSHSm™)

Fo=4% [I(gm) PL(S"Su —SutSe)SetSs+SuSu® (St Su™—SutSg™)
485,58 2SS m —SutS ) — 25 2SS+ 282 SmtS ¢+ 2S5 28t (Sy S —SwtSy7)

Go=4Y [I(gm) P(SgSmSgtSm —SutSySntSs),

+

+2I(mf)S S 1Syt Sm™—SutSy)+21(gf)S 1S #(Sw* Sy~ =St Sw7)], (ASe)
(S Sm—Su S5 ) St S St —SutS],  (ASE)

(Asg)

(A5h)

H,=4Y [I(gm) FLS s Su=SutSs—SutSsSstSu=+28mS Sy — 28 #SutSu].

To insure the accuracy of the above result, we have
first taken the precaution of using the correct value for
p, (P to calculate p,®(#). The accuracy of p,@(f) is
relatively easy to ascertain, both by double checking
and by making sure that it yields the correct result for
the fourth frequency moment (w*)x, when used in the
form

lim{whx=2 3 0o, ®(Dpu® (') 1= -
80 (g—w) ‘

(A6)

Similarly, the accuracy of p,¥(f) was ascertained by
both double checking and also evaluating the fourth
moment in the following fashion:

lim{whx=—2 2 e T, ®@)pp () 1=r -
B0 (g—w)

(A7)

The identity of the results (A6) and (A7) and their exact
agreement with the well-known corresponding results
obtained by Marshall and co-workers (see Ref. 3 and
other references cited therein) gives one confidence in
the correctness of p,® (2).

It should be mentioned here that the given form of
0, (! in Egs. (4) and (52)-(5b) was obtained after
suitable additions and equivalent subtractions of spatial
Kronecker delta functions in such a way that, when
appropriate lattice summations are carried out, the
result is zero if any of the spatial indices are the same.

This is a great aid in taking traces of the form (A1),
because we know that the various spatial indices then
always refer to different sites within p,®(¥). The sixth
moment now becomes

<w6>1<=—2 Z e—iK(g—w)

(g—w)
XTr[4yAw+B,By+C,CotDyDy+E E,
+FyFwtHH,+2C,Ey+2F,F.,]/Tr(1).

The traces of all the other terms (that the product
ps®p,® contains) are identically vanishing. Consider
for example all possible terms involving 4, and B, which
contain spin operators of the form S;25,25+S, and
S/HSS,Sa, respectively, where f, g, 7, and m are all
distinct. Since all of the other terms in the third deriva-
tive have at most three free (and distinct) indices, we
have only to consider the terms Tr4 4., TrB,B., and
Tr2B,A., and the last of these is easily seen to be zero
also.

In conclusion, it should be mentioned that the various
quantum-mechanical traces that occur in the foregoing
calculation have been tabulated in the literature.® In
the present calculation, these tables were used without
completely rechecking all the relevant traces.

(A8)

6 E. Ambler, J. C. Einstein, and J. F. Schooley, J. Math. Phys.
3, 118 (1962).



